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Estimating perceptual priors with finite experiments

Prior knowledge of stimulus statistics

iInfluences perception

Biases in perceptual judgments well-modeled with a Bayesian ideal observer
that combines noisy measurements with these priors (e.g. Weiss et al. 2002)
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Priors should reflect natural statistics and may

change during statistical learning

Visual motion priors assumed to be weighted towards slow speeds - reflecting
world and retinal motion (Aytekin et al. 2014); though estimates of priors are
variable between observers and conditions (Jogan & Stocker 2015, Rokers et
al. 2018) making it difficult to link priors with natural statistics

Priors may change by manipulating stimulus statistics in an experimental
setting (Sotiropoulos et al. 2011, Adams et al. 2004 ), but the principles with
which they do is not well understood.

Aim:

Success in characterizing priors depends on the quality and quantity of
experimental data and robustness of the models used to estimate priors from
these data. Here, we investigate model performance within a synthetic
experimental framework.

Prior estimation frameworks
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Simulating experiments using synthetic observers with known priors

Gaussian priors

Experimental Design Observer model
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Exponential priors
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Results: How accurate are our prior estimates?

Decreasing discriminability
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Methods detalils

Model Parameters:

Piecewise model:
13 (7 likelihood widths and 6 piecewise component log-slopes)

Mixture of Gaussian model:
16 (7 likelihood widths and 3 parameters for each of 3 Gaussian
components)

Model Fitting:
P("Viest > Vier |Viest Vrer) determined with signal detection theory; parameters of

Bayesian models fit to trial-by-trial data via MLE and constrained nonlinear
optimization

Prior Fit Accuracy:
Assessed with Jensen-Shannon divergence (JSD) between fit and

ground truth (0->1, lower is more accurate)

Prior Discriminability:

Are two prior estimates different due to variability between samples from
the same observer or different observers?

— Compared to minimum log-slope/o/y value, compute parameter where
p(JSDyifferent > JSDsame) = 0.95 using gamma fit to JSD distributions (within
and between observers), linear regression, and signal detection theory

Results: Comparison of model accuracy
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Conclusions

Developed a framework for guiding the experimental design of studies
iInvestigating perceptual priors

Long experiments required to accurately estimate priors and to confidently
distinguish observers with different priors

Piecewise estimation method is biased towards recovering long-tailed priors;
Mixture of Gaussians model easier to implement, but fits long-tails less well

Can use this framework to identify improvements to experimental efficiency
based on specific hypotheses about changes in priors



